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Abstract
Past numerical simulations and experiments of turbulence exhibit a hump in
the inertial range, called the bottleneck effect. In this paper, we show that
sufficiently large inertial range (four decades) is required for an effective energy
cascade. We propose that the bottleneck effect is due to the insufficient inertial
range available in the reported simulations and experiments. To facilitate
the turbulent energy transfer, the spectrum near Kolmogorov’s dissipation
wavenumber has a hump.

PACS numbers: 47.27.−i, 47.27.E−, 47.27.Gs

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Energy spectrum of turbulent flow is an important quantity. In 1941, Kolmogorov [1] showed
that the energy spectrum E(k) of turbulent flow is

E(k) = KKo�
2/3k−5/3f (k/kd), (1)

where � is the energy flux, KKo is Kolmogorov’s constant, kd is Kolmogorov’s wavenumber,
and the function f (x) → 1 in the inertial range (x � 1), and f (x) → 0 as x � 1.
Many experiments and numerical simulations verify this powerlaw apart from a very small
intermittency correction. The compensated energy spectrum E(k)k5/3/KKo is flat in the
inertial range and decays in the dissipation range. A careful observation of energy spectrum
obtained from recent high-resolution numerical simulations and experiments however show a
small hump near Kolmogorov’s wavenumber kd . The feature is called the bottleneck effect in
literature. In this paper, we propose an explanation for the bottleneck effect.

The bottleneck effect has been reported in many numerical simulations and experiments
of fluid turbulence. Yeung and Zhou [2], Gotoh et al [3], Kaneda et al [4] and Dobler et al [5]
found the bottleneck effect (hump in the normalized energy spectrum) in their numerical
simulations. Saddoughi and Veeravalli [6] studied the energy spectrum of atmospheric
turbulence and reported the bottleneck effect. They observed that the longitudinal spectra
have a larger inertial range (around 1.5 decade) but smaller hump, while the transverse spectra
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have relatively smaller inertial range (around one decade), but a larger hump. Shen and
Warhaft [7], Pak et al [8], She and Jackson [9] and other experimental groups also observed
the bottleneck effect in fluid turbulence.

The bottleneck effect has been seen in other forms of turbulence as well. Watanabe
and Gotoh and others [10–12] reported the bottleneck effect in scalar turbulence,
Haugen et al [13] in three-dimensional magnetohydrodynamics, Biskamp et al [14]
in two-dimensional magnetohydrodynamics, electron-magnetohydrodynamics and thermal
convection. Lamorgese et al [15], Biskamp et al [14] and Dobler et al [5] observed that the
bottleneck effect became more pronounced when hyperviscosity was increased.

There have been various attempts to explain bottleneck effect. Falkovich [16] argued that
the viscous suppression of small-scale modes removes some triads from nonlinear interactions,
thus making it less effective, which leads to pileup of energy in the inertial interval of scales.
Based on turbulent viscosity and the assumption of local energy transfer, Falkovich derived
the following formula for the correction in Kolmogorov’s spectrum:

δE(k) = E(k)(k/kp)4/3/ ln(kp/k), (2)

where kp is proportional to the dissipative wavenumber kd and k � kp.
Yakhot and Zakharov [17] derived energy spectrum using Clebsch variables and showed

that the energy spectrum is

E(k) = KKo�
2/3k−5/3f (k/kd) + Pk−1, (3)

i.e., correction is of the form k−1. Theoretical justification for k−1 was argued by Orszag [18]
who analysed the one-loop Dyson equation for the propagator G and the velocity correlation
function U; the spectrum k−1 was obtained by assuming that the response function is dominated
by viscous effects. She and Jackson [9] reported an experimental result in which they observed
the k−1 bottleneck correction; they argued coherent vortex structures to be the reason for the
bottleneck effect.

Kurien et al [19] extended Kolmogorov’s phenomenology to include the effects of helicity.
They found a shallower k−4/3 energy spectrum at higher wavenumbers by assuming that the
helicity transfer time-scales dominate at large wavenumbers. In the following discussion, we
will propose a new mechanism to explain the bottleneck effect. We argue that the bottleneck
effect is seen when the length of inertial range is insufficient for the energy cascade process.

2. The reason for the bottleneck effect

The basic idea presented in our paper is as follows. In a fully developed turbulence, a flux of
energy is transferred from small wavenumbers to large wavenumbers. This process involves
interactions of large number of modes—from small wavenumbers to large wavenumbers. The
maximum energy transfer from a given wavenumber shell is to its nearest neighbour. Still
significant amount of energy transfer takes place between somewhat distant wavenumber shells
[20–25]. Verma et al [25] showed using a theoretical arguments that if the inertial-range shells
are divided in such a way that the mth shell is given by k0(2m/4 : 2(m+1)/4), then in the inertial
range the normalized shell-to-shell energy transfer rates from shell m to shell m+1,m+2,m+3
are 18%, 6.7% and 3.6%, respectively. The remaining portion of energy flux, which is a huge
fraction (∼70%), is transferred to the distant shells. This result is in agreement with earlier
simulation results [21].

The above arguments imply that for an effective cascade of energy, there must be a
large enough range of wavenumbers. Ideally, when Kolmogorov’s wavenumber kd → ∞,
Kolmogorov’s cascade is setup, and the energy spectrum is given by equation (1). However,
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if Kolmogorov’s wavenumber is not sufficiently large, the cascade process faces difficulty; at
higher wavenumbers there are not enough number of modes to receive the energy transferred
from the smaller wavenumbers. To compensate, the wavenumbers near Kolmogorov’s scale
have a higher energy level. We propose this to be the main reason for the bottleneck effect.
Note that the energy fed at small wavenumbers fixes the level of energy spectrum in the inertial
range, and the energy input has to be dissipated at the higher wavenumbers. In the following
discussion, we will present a quantitative arguments to support the above idea.

2.1. Formalism

The average energy flux from a wavenumber sphere of radius k0 is given by [26–28]

�(k0) =
∫

k>k0

dk
∫

p<k0

dp〈S(k|p|q)〉, (4)

where S(k|p|q) is the ‘mode-to-mode energy transfer rate’ in a triad (p, q, k) with k = p + q
and 〈 〉 represents the ensemble average. The term S(k|p|q) represents the energy transfer
rate from mode p to mode k with mode q acting as a mediator. The term 〈S(k|p|q)〉 has
been computed earlier using the standard field-theoretic technique [26–30]. The procedure to
compute �(k0) is described in the above references, which yields

�(k0)= K
3/2
Ko �

[∫ ∞

k0

dk k2
∫ k0

0
dp

∫ k+p

|k−p|
dq

pq

4k

T1C(p)C(q) + T2C(q)C(k) + T3C(p)C(k)

ν∗(k2/3 + p2/3 + q2/3)

]
,

(5)

where ν∗ is the renormalized parameter in the expression of renormalized viscosity [28–30],
and it has been found it to be between 0.35 and 0.40. In this paper, we take ν∗ = 0.38 [28].
The correlation function C(k) is related to the one-dimensional energy spectrum E(k):

C(k) = E(k)

4πk2
, (6)

and Ti’s are given in [28]

T1 = kp(xy + 2z3 + 2xyz2 + x2z),

T2 = −kp(xy + 2z3 + 2xyz2 + y2z),

T3 = −kq(xz − 2xy2z − y2z),

where x, y, z are cosines defined as

p · q = −pqx, q · k = qky, p · k = pkz. (7)

The field-theoretic method mentioned above has certain similarities with the calculations
based on the eddy-damped quasi-normal Markovian approximation (EDQNM). Both these
methods use quasi-normal approximation, and eddy or renormalized viscosity.

In the subsequent subsections, we will use the above formalism to compute energy fluxes
using energy spectrum obtained from a model and direct numerical simulation. We also
estimate the extent of the bottleneck effect using energy transfer ideas.

2.2. Bottleneck effect in energy spectrum

We compare our theoretical results with numerical simulation. The simulations have been
performed for homogeneous, isotropic turbulence with stochastic forcing at low wavenumbers.
These simulations were done at 5123, 10243 and 20483 grids. Taylor-based Reynolds
numbers for these runs were approximately 240, 400 and 700, respectively. (See Yeung
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Figure 1. The normalized compensated energy spectra Ẽ(k) = E(k)k5/3/KKo versus k for
a model energy spectrum (equation (8)) with c = 0.2 and kd = 100, 1000, 10000, and from
numerical simulations on 5123, 10243 and 20483 grids at steady state. We take the energy flux
� = 1 in the inertial range, so that Ẽ(k) = 1 in the inertial range.

et al [12] for details on simulation.) We multiply the numerical energy spectrum with
k5/3/KKo(KKo = 1.58), then divide the resultant quantity by its maximum value in the inertial
range and obtain compensated energy spectrum Ẽ(k). In the inertial range, Ẽ(k) = 1. In
figure 1, we plot Ẽ(k) obtained from direct numerical simulations (DNS) done on 5123, 10243

and 20483 grids. A hump appears in all the DNS plots indicating the existence of the bottleneck
effect in numerical simulations. These results are consistent with the earlier numerical results
showing the bottleneck effect.

Comparison of the normalized energy spectra for different grid resolutions reveals that
the hump is most dominant for 5123, and it decreases as the grid size or Reynolds number is
increased, a phenomenon observed in earlier numerical results as well [4, 10–12, 31]. This
result indicates that the bottleneck effect decreases with the increase of inertial range, thus
reinforcing our hypothesis that the bottleneck effect may be due to nonavailability of sufficient
range of wavenumbers to facilitate energy cascade. Please note that we have quantified the
bottleneck effect by the size of the hump in the normalized energy spectrum. In individual
energy spectrum the size of the hump could depend on the energy input rate etc. Also, we
observe a hump at low wavenumbers which is due to the forcing at these scales. The focus of
this paper is on the hump at k ∼ kd , and we will not analyse the one at the lower waveumbers.

Let us compare the above energy spectra with a model energy spectrum for a turbulent
flow [15, 32, 33]

E(k) = KKoA(k/kf )�2/3k−5/3 exp(−ck/kd), (8)

where

A(x) = xs+5/3

1 + xs+5/3
, (9)

with forcing wavenumber kf = 2, c = 0.2 and s = 4. Throughout this paper we take
KKo = 1.58 [26, 29]. Clearly, E(k) ∝ ks for k < kf ,E(k) ∝ k−5/3 for the intermediate
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Table 1. The maximum values of energy fluxes for the model energy spectra (equation (8)) with
c = 0.2 and kd = 100, 1000, 10000, and for energy spectra obtained from numerical simulations
on 5123, 10243 and 20483 grids. For Kolmogorov’s spectrum max(�(k0)) = 1.

kd max(�(k0))

kd100 100 0.84
kd1000 1000 0.94
kd10000 10000 0.96
DNS512 – 1.14
DNS1024 – 1.09
DNS2048 – 1.02

range (kf < k < kd), and E(k) ∝ k−5/3 exp(−ck/kd) for the dissipation range (k > kd). The
choice of s = 4 is based on Batchelor’s spectra [34] for smaller wavenumbers. There is no
hump in the model spectrum because of the choice of its functional form. Here we compare
these spectra with spectra that show the bottleneck effect in order to see how the latter affects
the spectral energy transport.

Without loss of generality, we can take � = 1. In figure 1, we plot Ẽ(k), which is given
by

Ẽ(k) = E(k)k5/3/KKo = A(k/kf ) exp(−ck/kd). (10)

As expected, Ẽ(k) with higher kd produces a larger inertial range.
In the following subsection, we will compute energy flux by substituting the above energy

spectra (DNS and model) in equation (5) and compare the results. They provide important
clues for the bottleneck effect.

2.3. Bottleneck effect in energy flux

First, we compute the flux �(k) by substituting the model energy spectrum (equation (8)) in
equation (5) with � = 1. We compute the integral I (k0) (the bracketed term of equation
[5]) for various values of kd . When kd = ∞ and A(x) = 1, the integral I∞ = 0.50
independent of k0, implying that the flux is independent of k0 for the Kolmogorov energy
spectrum (E(k) = KKo�

2/3k−5/3). Using I∞ we find the Kolmogorov constant, KKo = 1.58
(this is how KKo was computed in [28]). After this the integral I (k0) is computed using the
model spectrum with s = 4, c = 0.2, and kd = 100, 1000, 10000. The value of I (k0) starts
from 0 at k0 = 0, reaches a peak, and then it decays.

The energy fluxes at various wavenumbers are

�(k0) = K
3/2
Ko I (k0), (11)

with KKo = 1.58. Figure 2 contains plots of �(k0) versus k0 for different values of (kd, c).
The maximum values of �(k0) for these cases are listed in table 1. They are all less than 1,
but the difference from the actual value (1) is lower for larger kd . Theoretically, max(�(k0))

must be 1 because the energy input at small wavenumber is 1. The reason for the decrease in
max(�(k0)) is the lack of modes in the inertial range. This is where the hump in the energy
spectrum near dissipation wavenumber comes into play.

After the flux calculation for model spectrum, we compute the flux integral using Ẽ(k)

obtained from DNS at 5123, 10243 and 20483 grids and obtain max(�DNS). These values
are listed in table 1. The value of max(�DNS) for 20483 is very close to unity. Clearly, the
energy spectra obtained from numerical simulations provide a better handle on energy flux as
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Figure 2. The computed flux �(k0) using equation (5) for a model energy spectrum
(equation (8)) with c = 0.2 and kd = 100, 1000, 10000, and from numerical simulations on
5123, 10243 and 20483 grids at steady state.
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Figure 3. The normalized energy flux computed directly from DNS on 5123, 10243 and 20483

grids under steady state. The forcing used in run DNS2048 has a different spectrum from that used
in DNS512 and DNS1024.

compared to the model energy spectrum (equation (8)). This is because of the higher level of
energy spectrum (hump) near Kolmogorov’s wavenumber in the DNS (see figure 1), which
makes up for the loss of large wavenumber modes. The overall effect is that the energy flux
in high-resolution DNS is closer to what is expected in an idealized situation when kd → ∞.
Thus consistency with Kolmogorov’s theory is achieved. The value max(�DNS) for 5123 is
somewhat higher than 1, which may be due to the approximations made in our theoretical
calculations.

The DNS plots of figure 2 are the fluxes computed by substituting the DNS energy spectra
in equation (5). This exercise was done to examine the effects of the bottleneck correction in
the flux. In figure 3, we plot the normalized energy flux computed directly from DNS data on
5123, 10243 and 20483 grids. The two plots match qualitatively, but not quantitatively because
of the assumptions made in the field-theoretic calculation. The coupling of wavenumber
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Table 2. The energy transfer rates from a wavenumber sphere in the inertial range to n shells
adjacent to the sphere (Qn/� = ∑n

m=1 m ∗ T m
n ) for various ns.

n 1 2 3 8 13 28 32 48

2n/4 21/4 21/2 23/4 4 95 128 256 4098
Qn/� 0.18 0.32 0.42 0.74 0.88 0.99 0.99 ∼1

modes in forced, inertial range, and dissipation range is not yet fully understood to be able to
resolve �(k) completely from theory [25, 35–37].

In the present subsection, we showed that the bottleneck correction near the dissipation
range helps in the effective transfer of energy flux. In the following subsection, we estimate
the extent of the bottleneck effect due to the mechanism proposed in our paper.

2.4. Estimation of the bottleneck effect

In this subsection, we will attempt to estimate the extent of the bottleneck effect using
semiquantitative arguments. Because of the lack of complete understanding of the coupling
between the forced, inertial, and dissipative scales, this is the best we can do at present.

Verma et al [25] and Verma [28] computed the shell-to-shell energy transfer rate from
mth wavenumber shell to nth wavenumber shell

(
T m

n

)
using

T m
n = K

3/2
Ko �

[∫
k∈sn

dkk2
∫

p∈sm

dp

∫ k+p

|k−p|
dq

pq

4k

T1C(p)C(q) + T2C(q)C(k) + T3C(p)C(k)

ν∗(k2/3 + p2/3 + q2/3)

]
,

(12)

where sm,n are the wavenumber range for the mth and nth shells, respectively. The wavenumber
space is divided into various shells logarithmically. In Verma et al [25] and Verma [28] the
mth shell is (2m/4 : 2(m+1)/4).

Verma et al [25] and Verma [28] computed T m
n in the inertial range using a similar

procedure as described in the previous subsection. Kolmogorov’s spectrum k−5/3 was assumed
throughout the wavenumber space. They found that the energy transfer is maximal to the
nearest neighbour, yet significant energy is transferred to other shells. For example, the
energy transfer rates from mth shell the shells m+ 1,m+ 2 and m+ 3 are 18%, 6.7% and 3.6%,
respectively. The transfer rate decreases monotonically for more distant shells.

Let us imagine a wavenumber sphere of radius R somewhat in the middle of the inertial
range. Using the shell-to-shell energy transfer rates, we can compute the energy transfers
from the above wavenumber sphere to n shells adjacent to the sphere (wavenumber range
[R : R ∗ 2n/4]). Simple algebra shows that the above quantity is [28]

Qn

�
=

n∑
m=1

m × T m
n . (13)

In table 2 we list Qn for various values of n. The table shows that 42% of the flux is transferred
to the three adjacent shells. To transfer 99% energy we need 28 shells in the right of the sphere.
Therefore, we require large number of wavenumber shells for effective energy transfer, and the
bottleneck effect is expected if the inertial range is insufficient. In this theory, the bottleneck
effect would disappear when there are sufficient wavenumber shells to enable the complete
energy transfer.

The energy transfer among the wavenumber shells is antisymmetric, that is T m
n = −T n

m .
If we assume the above-mentioned wavenumber sphere to be in the middle of the inertial
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range, we require approximately 28 × 2 = 56 shells for an effective energy transfer. Hence,
the inertial range (kmax/kmin) required must be around 256/4 ≈ 104. Hence our estimate
for the minimum length of the inertial range for no bottleneck effect is approximately four
decades. The range of inertial range in all the experiments and simulations discussed in this
paper is less than four decades, and the bottleneck effect is observed in all of them. Hence
our theoretical estimate is consistent with the present experimental and numerical results. We
remark that the above estimate of the required inertial range for zero bottleneck effect could
be an overestimate. A realistic estimate requires a detailed study of energy transfer among
modes in the whole range: forcing, inertial and dissipation range.

After the above estimation of the required inertial range to suppress the bottleneck, we
move on to estimate the increase in the energy spectrum due to the bottleneck effect. Suppose
the energy spectrum E(k) till the dissipation wavenumber is

E(k) = KKo�
2/3k−5/3(1 + e(k)), (14)

where e(k) = δE(k)/E(k) is the normalized bottleneck correction. There is a complex
interaction between the wavenumbers in the forcing, inertial and dissipation range, which is
not yet completely understood. For the time being, we estimate the additional energy transfer
due to the bottleneck correction to be of the order of Tbottleneck ∼ � × e(kd). Since the energy
supplied at the large scales has to reach the dissipation scale, and if the number of wavenumber
shells to the right of the above-mentioned wavenumber sphere is n, then

Qn

�
+

Tbottleneck

�
≈ 1. (15)

Therefore,

e(kd) = δE(kd)

EKolm(kd)
≈

[
1 − Qn

�

]
. (16)

Using Zhou [21] and Verma et al’s results [25] that T m
n ≈ |n − m|−4/3 for small (n − m), we

estimate
Qn

�
≈ αn2/3, (17)

where α is a positive constant. Assuming that the we have equal number of wavenumber shells
to the left and right of the wavenumber sphere R discussed above, the ratio of Kolmogorov’s
wavenumber and forcing wavenumbers is approximately

kd

k0
∼ Re3/4 ∼ (2n/4 × 2n/4), (18)

which yields n ∼ 1.5 log2 Re, where Re is the Reynolds number based on Kolmogorov’s
scale. Substituting this estimate of n in equation (16), we obtain

e(kd) ∼ 1 − α(1.5 log2 Re)2/3, (19)

which is plotted in figure 4 for a reference with α = 0.09. The three points represent the
(Re, e(kd)) for three DNS discussed in the present paper. The choice of α = 0.09 fits best
with the DNS values, and it is consistent with our Qn equation (equation (13)). The numerical
values of DNS fit quite well with the theoretical predictions (see figure 4); however, we need
more DNS results for a better test of our theoretical estimate of the bottleneck correction.
Also, for α = 0.09, e(kd) ≈ 0 for n ≈ 37 and Re ≈ 107. These estimates are in reasonable
agreement with our earlier estimate of the length of the inertial range for zero bottleneck
effect. Our prediction of e(kd) is proportional to 1 − const(log Re)2/3, and it differs from the
predictions of earlier theories.
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Please note that the above expression for e(kd) is only a crude approximation, and could be
an overestimate. To better understand the bottleneck effect we need to understand the coupling
among forcing, inertial and dissipation scales, as well as other aspects like intermittency.

The dynamics at the dissipation rate is quite important in the study of the bottleneck
effect. This is evident from the numerical observations of Lamorgese et al [15], Biskamp
et al [14] and Dobler et al [5] who reported that hyperviscosity enhances the bottleneck effect.
Since the extent of inertial range increases with the introduction of hyperviscosity, it may
appear that the bottleneck effect should decrease in the presence of hyperviscosity. However,
that is not the case. This result is possibly because of the shorter dissipation range in the
presence of hyperviscosity, and the hump in the energy spectrum near kd could help in the
inertial-range energy transfer as well as in the dissipation of energy. This is an important
question to investigate. So far, our focus has been on the physics of energy transfer in the
inertial range. A more detailed study of energy exchange between wavenumbers in the inertial
and dissipative range is required for a conclusive statement [35, 37].

3. Conclusions

To summarize, in this paper we investigated the reasons for the bottleneck effect in turbulence.
The energy is supplied at large scales, and it cascades to smaller scales. Recent numerical
and theoretical studies show that even though most of the energy from a given wavenumber
shell goes to the next wavenumber shell, there is a significant energy transfer to the distant
wavenumber shells. We showed that an effective transfer of energy flux in the inertial range
can take place when there is approximately four decades of inertial range. If the inertial
range is shorter, a hump is created near Kolmogorov’s scale (beginning of dissipation range)
which compensates for the nonexistence of the required inertial range. The bottleneck effect
is observed in most of the current numerical simulations and experiments.

The mechanism proposed in the present paper differs from that of Falkovich [16] and
Yakhot and Zakharov [17]. Falkovich [16] argued that the bottleneck effect is due to the
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suppression of nonlinear interactions by dissipative modes, and it is present for all dissipative
turbulence systems. Falkovich assumes essentially a local energy cascade in contrast to both
local and nonlocal transfers in our mechanism. In our picture, the energy is transferred to
the dissipative scales not only from its immediate neighbouring wavenumber shells, but also
from the middle of inertial range. The energy transfer by Kolmogorov’s spectrum requires
certain minimum inertial range. If this range is not present, the energy levels of the modes
near Kolmogorov’s scales increase to facilitate the energy transfer. Note that if full range of
inertial range is present, the last wavenumber shells in the inertial range would transfer only
a small fraction of energy flux, and there is no bottleneck effect. Our theory suggests that the
bottleneck effect will disappear if the inertial range is more than approximately four decades.
Yakhot and Zakharov [17] and She and Jackson [9] obtained k−1 bottleneck correction. Our
model purely based on energy flux differs from these theories as well. Quantitatively, our
prediction for the bottleneck correction e(kd) is proportional to 1 − const(log Re)2/3, and it
differs from the predictions of earlier theories.

Traditional shell models of turbulence assume local energy transfers and have a large
inertial range (215−20 ∼ 105−10). The bottleneck effect is generally not observed in the shell
models. However, Biferale and Kerr [38] report the bottleneck effect in a shell model (n = 15)

based on the Kerr–Siggia model. So shell models with a small inertial range could show the
bottleneck effect, but the bottleneck effect in the shell model is in the spirit of Falkovich’s
mechanism; there is not enough dissipative scale to dissipate the cascaded energy.

The ‘real’ turbulence however involves local as well as nonlocal energy transfers that
are not simulated in local shell models of turbulence. The recent nonlocal shell models [39]
attempt to model these features of turbulence, and it will be interesting to investigate bottleneck
effect in the nonlocal shell models. We remark that the field-theoretic calculation presented
in this paper is more fundamental than the shell model, and some of its features are same as
the shell model. Still it is instructive to independently investigate the bottleneck effect using
a nonlocal shell model.

Many important and unresolved issues are involved in the study of the bottleneck effect.
We need to fully understand the nonlinear coupling between the forcing, inertial and dissipative
range (see Alexakis et al [35], Debliquy et al [36], Verma et al [25], Brasseur and Wei [37]
for some of the recent attempts). The vortex interactions, intermittency etc also come up in
the study of the bottleneck effect, and we need to understand them better as well.

The energy transfer in the turbulence of passive scalar and magnetohydrodynamics follows
similar patterns as in fluid turbulence. The energy transfer is forward and local, yet a significant
range of the inertial range is required for effective energy transfer [40]. Hence we expect the
bottleneck effect to be present in these systems as well. These projections are consistent with
a strong bottleneck effect observed in numerical simulations of Watanabe and Gotoh [10]
and Yeung et al [11, 12] for passive-scalar turbulence, and those of Haugen et al [13] for
MHD turbulence. The bottleneck effect has been observed in electron-magnetohydrodynamic
(EMHD) turbulence, and two-dimensional turbulence (see Biskamp et al [14] and references
therein), but its cause is possibly more complex. It has been observed that the bottleneck
effect along the transverse and longitudinal directions are different [6]; this result still lacks
satisfactory explanation. Future developments in theoretical turbulence will possibly resolve
some of these issues.
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